

Master 1 EECS : High frequency electronics Exercises

1 Transmission line parameters

Consider the microstrip line in Figure 1. The considered substrate is Rogers RO4003, with a relative permittivity $\varepsilon_r = 3.38$, a substrate thickness h=787 µm, a loss tangent $\tan(\delta)=0.0025$. Copper conductors have a thickness t=18 µm, and a conductivity $\sigma = 58 \cdot 10^6$ S/m.

Figure 1: (a) Cross-sectional view and (b) 3-D view of a microstrip line

The EM field propagates partly in the air (above the conductor strip), partly in the substrate.

1.1 Characteristic impedance and equivalent effective permittivity

- a) Give the expression of the characteristic impedance Z_C of the microstrip line as a function of the line parameters per unit length in the low-loss case.
- b) The characteristic impedance of the microstrip line is shown in Figure 2(a). Explain the behaviour of Z_c as a function of the strip width W.

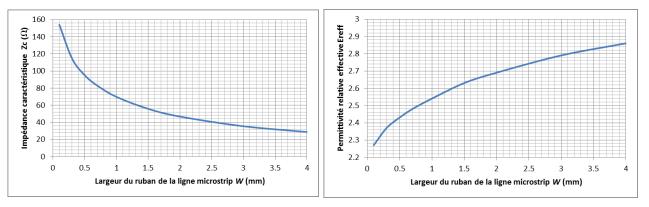


Figure 2: (a) characteristic impedance Z_c and effective relative permittivity ε_{reff} of the considered microstrip line line as a function of strip width W

c) Recall the expression of the propagation velocity v_{φ} as a function of ε_{reff}

- d) Give the expression for the propagation velocity v_{φ} as a function of C_L and L_l
- e) Explain what is the effective relative permittivity of a microstrip line?
- f) The effective relative permittivity ε_{reff} of the transmission line is shown in Figure 2(b). Explain the behaviour ε_{reff} as a function of the strip width W.

A microstrip line with a characteristic impedance of 50 Ω is now required. The working frequency of is 2.45 GHz.

- g) From Figure 2, deduce the width of the signal strip W.
- h) From Figure 2, determine the value of the effective relative permittivity ε_{reff} .
- i) Determine the value of v_{ω} .

1.2 Electrical model RLCG

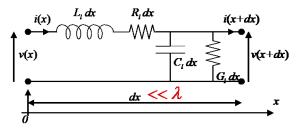


Figure 3: Electrical model of a transmission line

- a) From the values of Z_c and v_{φ} determined above, deduce the values of the inductance per unit length L_l and the capacitance per unit length C_l .
- b) Knowing C_l , deduce the value of the conductance per unit length G_l at 2.45 GHz. Let us indicate that the conductance is proportional to the capacitance C_l and to frequency. Moreover, the higher the loss tangent, $\tan(\delta)$, the higher G_l is. For a microstrip line, one can consider the following formula:

$$G_l = \omega \cdot C_l \cdot tan(\delta)$$

c) Calculate the resistance per unit length R_{l_0} at low frequency of the microstrip line. For that step, consider that this resistance is mainly due to the upper strip:

$$R_{l_0} = \rho \frac{1}{S} = \rho \frac{1}{W \cdot t}$$

where $\rho = 1/\sigma$ is the resistivity of the copper strip, $S = W \times t$ is the section in which the current flows.

d) Now, calculate the resistance per unit length R_l at the working frequency 2.45 GHz. For that, the skin effect of the metallic strips must be considered:

Thickness δ in which the current flows at high frequency

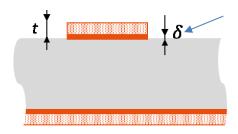


Figure 4: Cross-sectional view of a microstrip line. Highlighting of the "skin effect"

Skin effect:

At high frequencies, a non-uniform current distribution is observed in a conductor: decrease in current density when moving away from the periphery of the conductor \rightarrow it induces a smaller section of the conductor in which the current flows.

Moreover, due to the proximity effect between the ground plane and the microstrip, the current flows over a thickness δ only at the interface between the strip and the substrate (as a first approximation). As the frequency increases, the penetration thickness (skin thickness) δ of the current in the material is smaller:

$$\delta = \frac{1}{\sqrt{\pi \cdot f \cdot \mu_0 \cdot \sigma}}$$

where $\mu_0 = 4\pi \cdot 10^{-7} H/m$, f is the frequency, and σ is the conductivity of the strip.

This reduction in the thickness of current flow leads to an increase in resistance (Joule effect losses). Hence, two cases occur:

- if $\delta > t \rightarrow R_l = R_{l_0} = \rho \frac{1}{W \cdot t}$: in that case, since the skin depth is higher than the thickness of the strip t, the current flows in the total height of the strip.
- if $\delta < t \rightarrow R_l = \rho \frac{1}{W \cdot \delta}$: in that case, since the skin depth is smaller than the thickness of the strip t, the current flows in a smaller height δ . In that second case, since R_l is higher than R_{l_0} , losses will be increased.

Hence, after having calculated the skin depth δ at 2.45 GHz, calculate the resistance per unit length R_l .

1.3 Attenuation constant, phase constant

- a) Determine the attenuation constant α by separating the conductive losses α_c and the dielectric losses α_d .
- b) Deduce the attenuation loss $A_{dB/m}$ of the microstrip line in dB/m.
- c) Determine the phase constant β of the microstrip line at 2.45 GHz.
- d) A 50 Ω microstrip line of length $L = \lambda/2$ is expected. Determine this length in mm.
- e) Deduce the attenuation A_{dB} between the input and the output of this microstrip line.
- f) What power ratio does this correspond to?